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We present our latest developments towards estaliD attenuated total reflectance
(ATR) IR spectroscopy as a versatile, surface-tgasmethod for obtaining ultrafast
vibrational signals from solid-liquid interfacesurface-enhancement mechanisms are
characterized in detail and we report the developneé 2D ATR IR for spectro-
electrochemistry at electrode surfaces.

Dynamics and structures of molecules at solid-tiqoterfaces are of significant importance in
chemistry and physics. To study ultrafast vibragioproperties of samples near solid-liquid
interfaces, we recently developed two-dimension@naated total reflectance infrared
spectroscopy (2D ATR IR)[1-4]. 2D ATR IR spectropgds a third-order nonlinear method
which employs short-range (sub-um) evanescentsfigideflecting planes of an ATR crystal,
guaranteeing maximum light intensity at the inteefand the well-known surface-sensitivity
of the ATR technique. We focus on the two mostméogajor developments of 2D ATR IR.

Firstly, we use ultrathin (~nm) noble metal layirgmmobilize molecules at the ATR interface
and to enhance the weak nonlinear signals[3] frobarmonolayer surface coverages[2]. Using
polarization-dependent 2D ATR IR signals, we clatife mechanisms of signal enhancement
and evaluate contributions from electromagnetic aftemical contributions[3]. We
demonstrate that s-polarization (solid lines, Eiga)) optimally enhances 2D ATR IR signals
from voids between metal nanoparticles (NPs, Fifh)1- (c)), while p-polarization (dashed
lines, Fig. 1 (a)) enhances signals from outsides/thids with different degrees of enhancement.

Secondly, we report on a combination of 2D ATR IRedroscopy with spectro-
electrochemistry (SEC), using the ultrathin contheckayers at the ATR interface as electrodes
[4]. We outline experimental key-points in the depeent of 2D ATR IR SEC and use
vibrational Stark-shift spectroscopy of carbon made (CO) adsorbed to platinum (Pt) NPs
to demonstrate the electrochemical performancén@fetectrode surfaces (Fig. 1 (d) — (Q)).
Furthermore, we characterize potential-dependdrafast vibrational relaxation as well as
spectral diffusion of surface-bound CO (Fig. 1 (h))
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Figure 1. (a) — (c) Characterization of surfaceasmement mechanisms with diagonal 2D ATR IR sig(@lsnd
electron-microscopy analysis (b) — (c) of differentfaces from Gold NPs. (d) — (f) 2D ATR IR SE@Grsils of
CO adsorbed ot Pt NPs at different electrode piaten{g) Ground-state bleach vibrational Starkfshignals of
CO. (h) Potential-dependent vibrational relaxatieft scale) and spectral diffusion (CLS, rightls¢af surface-

bound CO. In (g) and (h), open symbols are experiai@lata, solid lines represent linear- or exptinéfits.
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